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Abstract—The aim of this paper is to identify and control a pneumatic servo drive in real-time environment. 

Obtaining the system’s dynamic model accurately can be difficult once the pneumatic servo-system has been 

assembled since its highly nonlinear in nature, as a result, some difficulties in servo-pneumatic system modeling and 

control. In order to, overcome the complexity associated with the system nonlinearity, auto-regressive moving-

average (ARMA) model is employed to identify the system’s dynamic model in real-time environment. The 

advantages of this approach include high accuracy in the estimated model, low cost, and time reduction in controller 

design. The results acquired from the online experimental measured data are used to predict a discrete transfer 

function of the pneumatic servo system. The fourth-order model with one-step prediction shows the best 

performance compared with different order estimated model with varying sizes of step. Due to the highly 

nonlinearity of the system under study, two sophisticated controllers, PID-type fuzzy logic controller and Fractional 

order PID controller were chosen and designedusingthree optimization algorithms, namely particle swarm 

optimization (PSO), genetic algorithm (GA), grey wolf optimization (GWO). 

 

Keywords—Servo-pneumatic, System Identification, Fuzzy Control, Fractional Order PID, Optimization 

algorithms. 

Introduction 

Pneumatic servo drives are used in many applications 

in the industry due to several advantages, free and 

available source, environmentally friendly, has a 

simple structure so that easy to maintain, easy to 

transmit the power through pipes. pneumatic systems 

are highly nonlinear, and time-variant system due to 

the air compressibility, internal and external 

disturbances. 

The First theoretical and experimental works on 

closed loop servo-pneumatic system were by Shearer 

in the 1950’s (1954 & 1957) [1]. He did a complete 

theoretical analysis of a double-rod pneumatic 

cylinder involving the air compressibility in the two 

actuator chambers and the characteristics of the 

airflow through a proportional control valve. He also 

made several simulations runs on an analog computer, 

and the dynamic model he obtained was a linear third-

order transfer function. 

Liu and Bobrow (1988) [2] derive a linear state-space 

model of the pneumatic servo-actuators in robotic 

based on an arbitrary operating point and 

experimentally determined the unknown flow constant 

of the linear model for doing LQ and PD based 

control. They pointed out that the linear model 

captures the dominant dynamics of the pneumatic 

servo system with an adequate precision so that 

pneumatic systems are practical for use in servo 

control applications. 

In (Pu et al., 1992) [3], they studied digital motion 

control and profile planning for pneumatic servo 

systems. They claimed that it is quite difficult to 

predict actual pneumatic motion characteristics when 

serval types of motion are required since the transient 

response and stability of pneumatic servo systems are 
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inherently complex, highly nonlinear, and difficult to 

model; being velocity/acceleration dependent, 

position-dependent as well as direction dependent. 

This complexity is mainly caused by the air 

compressibility, the pressure drops along transmission 

tubes, possibly time-varying and leakage. In their 

research, a simplified linear dynamic model was used 

for analysis, and controller design. 

A paper by (E Richer, Y Hurmuzlu, 2000) [4] 

presented a detailed mathematical model of dual 

acting pneumatic cylinder controlled with the 

proportional control valve. They studied the influence 

of nonlinear air flow through the proportional valve, 

leakage between chambers, the compressibility of air 

in the cylinder chambers, end of stroke inactive 

volume, time delay, and attenuation in pneumatic tube 

lines considered carefully. Then numerical simulation, 

parameter estimation, and model validation were 

conducted for two types of pneumatic cylinders, and 

different connecting pipes length shows that perfect 

agreement. 

linear control strategies are modified in order to show 

a good performance. In fact, many modified linear 

controllers have been introduced for servo-pneumatic 

systems. Linearized Feedback and disturbance 

rejection with PID controller studied in the works [5, 

6]. They demonstrate that a pneumatic actuator with a 

payload can be linearized. In [7-11], they proposed a 

control law composed of a linearized input/output via 

static nonlinear state feedback. A recently, (Sobczyk 

et al., 2012) [12] proposed linearized feedback with 

friction compensation conducted on a pneumatic 

positioning system.     

The most common controller in servo pneumatic 

positioning system is the state feedback controller, 

called PVA controller and used three feedback 

signals; position, velocity, and acceleration [13-17]. 

However, the acceleration feedback signal is difficult 

to measure and involved much noise when obtains 

from the derivative of velocity or the second 

derivative of position. For this reason, [18, 19] 

modified the state feedback controller by measure the 

pressure difference in the cylinder chambers and feed 

it to the controller instead of the acceleration signal. 

The PVA and modified state controllers can enhance 

both dynamic and static performance so that 

pneumatic systems are the excellent practical choice 

for use in servo position control applications. On the 

other hand, they are not robust enough to payload 

changes as well as to friction force effects. 

Adaptive control approaches usually apply to improve 

the control performance of the dynamic systems in the 

case where the dynamic model of the system changes 

during the operation. As well as, they reduce the 

effects of system nonlinearities. Adaptive controllers 

generally apply three principles; parameter estimation, 

decision, and modification. Several adaptive control 

techniques have been proposed [20, 21], self-tuning 

PID control [22], adaptive PI control [23], self-tuning 

Proportional controller [24], fuzzy PID gain 

scheduling [25]. One problem with this control 

approach is that there is no general algorithm to 

design an adapter. Hence, most adapter functions are 

especially for some sort of application. 

In this paper, ARMA models and RLS algorithms 

were utilized to identify the servo-pneumatic system 

online. Due to the highly nonlinearity of the system 

under study, two sophisticated controllers, PID-type 

fuzzy logic controller and Fractional order PID 

controller were chosen and designed using three 

different global optimization algorithms to fulfill the 

system needs. The PID-type logic fuzzy controller 

should provide means for accurate control of 

nonlinear systems and guarantee the robustness to 

modeling errors and uncertain parameters. fractional 

order PID controller is more flexible than the 

conventional PID controller. 

The rest of the paper is organized as follows. Section 

2 provides the ARMA models and the recursive 

estimation algorithm.The experimental setup is 

presented in Sect. 3. the employment of online 

identification is provided in Sect. 4. Sect 5first gives a 

brief introduction to the controllers, fitness functions, 

and optimization algorithms, then obtained the 

optimal paraments of the controllers and validate them 

on real time simulation. Finally, the conclusion is 

drawn in section 6. 

 

I. ARMA MODELS AND RLS ALGORITHMS 

The least square algorithm is used to identify 

autoregressive moving average ARMA parameters 

using input/output measured data as shown in figure 

1. [26, 27]. For simplicity of derivation, we consider 

single input single output model structure. 

 
Figure 1. Block diagram of the online system 

identification. 

𝑦̂(𝜏) =  ∑𝑎̂𝑖(𝑘)𝑦(𝜏 − 𝑖)

𝑛

𝑖−1

+ ∑ 𝑏̂𝑗(𝑘)𝑦(𝜏 − 𝑗)

𝑚

𝑗−1

 

(1) 

Where 𝑦̂(𝜏) = the estimated output samples,𝑦(𝜏), and 

𝑢(𝜏) are input and output samples, 𝑎̂𝑖(𝑘) and 𝑏̂𝑖(𝑘) 

are the unknown system parameters.  
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For all integers values of 𝜏 ∈ [1, 𝑘] we would like to 

find the set of parameters which satisfy the system of 

equations  

[

𝑦(1)

𝑦(2)
⋮

𝑦(𝑘)

] = 

[

𝑦(0) ⋯ 𝑦(1 − 𝑛) 𝑢(0) ⋯ 𝑢(1 − 𝑚)

𝑦(1) ⋯ 𝑦(2 − 𝑛) 𝑢(1) ⋯ 𝑢(2 − 𝑚)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑦(𝑘 − 1) ⋯ 𝑦(𝑘 − 𝑛) 𝑢(𝑘 − 1) ⋯ 𝑢(𝑘 − 𝑚)

] 

[
 
 
 
 
 
𝑎̂1(𝑘)

⋮
𝑎̂𝑛(𝑘)

𝑏̂1(𝑘)
⋮

𝑏̂𝑛(𝑘)]
 
 
 
 
 

 

(2) 

The compact form of Eq (2) is 

𝑌𝑘 = 𝑋𝑘𝜃̂(𝑘) (3) 

Eq. (3) can’t be realized in the real world due to 

measurement noise and uncertainty, so the more 

realized form of Eq (4) Is, 

𝑌𝑘 + 𝐸𝑘 = 𝑋𝑘𝜃̂(𝑘) (4) 

Now the goal is to determine the𝜃̂(𝑘), which 

represent the unknown parameters, by minimizing the 

error in least square  

𝐽(𝑘) = ∑𝑒2 (𝑖)

𝑘

𝑖−1

 (5) 

𝐽(𝑘) = 𝐸𝑘
𝑇𝐸𝑘 = ∑[𝑦(𝑖) − 𝑋𝑇(𝑖 − 1)𝜃̂(𝑘)]2

𝑛

𝑖−1

 (6) 

The minimum error can find by solving the following 

equation  

𝜕(𝐸𝑘
𝑇𝐸𝑘)

𝜕𝜃̂(𝑘)
 = 0 (7) 

The solution of Eq (7) is  

𝜃̂(𝑘) = (𝑋𝑘
𝑇𝑋𝑘)

−1𝑋𝑘
𝑇𝑌𝑘 (8) 

Since measurements samples have varying influence, 

the weighted least square equation can be written as 

𝜃̂(𝑘) = (𝑋𝑘
𝑇 𝑊 𝑋𝑘)

−1𝑋𝑘
𝑇 𝑊 𝑌𝑘 (9) 

Where W is a diagonal weight matrix  

𝑊 =  𝑑𝑖𝑎𝑔 [𝜆𝑘−1  ⋯  𝜆   1] (10) 

𝜆 is forgetting factor0.95 < 𝜆 < 0.99 

The quality of measurements can be determined by 

the covariance matrix of the observation  

𝜃̂(𝑘) = (𝑋𝑘
𝑇𝑄𝑘

−1𝑋𝑘) 
−1𝑋𝑘

𝑇𝑄𝑘𝑌𝑘 (11) 

The main problem with the above algorithm is that 

requires matrix inversion(𝑋𝑘
𝑇𝑄𝑘

−1𝑋𝑘) 
−1, as the size 

of the matrix depends on the number of parameters, 

as the number of (n, m) increases, therefore, taking 

the inverse matrix for all previous measured data will 

be computationally cost. Moreover, it requires large 

memory for all pervious measured data. Estimating 

the parameter vector θ recursively can solve these 

two problems, reducing the memory usage and the 

computations, where the parameter vector θ is 

updated every iteration until convergence. instead of 

one time after collecting a dataset. 

𝜃̂(𝑘 + 1)

= ([
𝑋𝑘

𝑋𝑇(𝑘)
]
𝑇

[
𝑄𝑘𝑋𝑘𝜆

𝑋𝑇(𝑘)
])

−1

[
𝑋𝑘

𝑋𝑇(𝑘)
]
𝑇

[
𝑄𝑘𝑌𝑘𝜆

𝑦𝑇(𝑘 + 1)
] 

(12

) 

𝜃̂(𝑘 + 1)
= [𝑋𝑘𝑄𝑘𝑋𝑘𝜆 +  𝑋𝑇(𝑘)𝑋𝑇(𝑘) ]−1 [𝑋𝑘𝑄𝑘𝑌𝑘𝜆 
+  𝑋𝑇(𝑘)𝑦𝑇(𝑘 + 1)]  

(13

) 

Assume the following  

𝑃(𝑘) =  [𝑋𝑇𝑄𝑘𝑋𝑘]
−1 , and  (14) 

𝑃(𝑘 + 1) =  [𝑋𝑘
𝑇𝑄𝑘𝑋𝑘𝜆 + 𝑋𝑇(𝑘)𝑋𝑇(𝑘) ]−1  (15) 

The matrix inversion lemma is very useful here 

[𝐴 + 𝐵𝐶𝐷]−1 = 𝐴−1

− 𝐴−1𝐵(𝐷𝐴−1𝐵
+ 𝐶−1)−1𝐷𝐴−1 

(16) 

By applying this Lemma for the calculation of 

P(k+1),𝐴 = 𝑋𝑘
𝑇𝑄𝑘𝑋𝑘𝜆, 𝐵 = 𝑋(𝑘), 𝐶 = 𝐼, 𝐷 =

𝑋𝑇(𝑘), so we will obtain a recursion formula for 

solving and updating the matrix P(k) 

𝑃(𝑘 + 1)
=  𝜆−1[𝑃(𝑘) − 𝑃(𝑘)𝑋(𝑘)[𝑋𝑇(𝑘)𝑃(𝑘)𝑋(𝑘)
+  𝜆]−1𝑋𝑇(𝑘)𝑃(𝑘) 

(17) 

Using Eq (15), we can write 

𝜃̂(𝑘) = 𝑃(𝑘)𝑋𝑘
𝑇𝑄𝑘𝑌𝑘 (18) 

After some calculations, the update equation will be  

𝜃̂(𝑘 + 1)

= 𝜃̂(𝑘) + 𝑃(𝑘)𝑋(𝑘)
𝑦(𝑘 + 1) − 𝑋𝑇(𝑘)𝜃̂(𝑘)

𝜆 + 𝑋𝑇(𝑘)𝑃(𝑘)𝑋(𝑘)
 

(19) 
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II. EXPERIMENTAL SETUP 

The test rig integrates all mechatronics components 

which include mechanical elements, e.g., pneumatic 

circuit, electronics elements e.g. embedded closed-

loop control for the proportional valve as well as 

distance sensor and real-time computer interface, with 

excellent computational capacity and good software 

capability which receive signals from the sensor 

process them then send appropriate controlled signal 

to the actuator drive.  

The test rig consists of a pneumatic circuit which 

composed from a pneumatic power supply 2 HP 

connected to air service unit, 5/3 Fasto pneumatic 

servo valve, the pneumatic cylinder has a piston 

diameter of 42 mm, rod diameter of 16 mm, and 

stroke length of 140 mm. A pneumatic cylinder 

attached with timing built and two pullies mechanism 

in order to measure the linear distance by rotary 

potentiometer. The feedback signal comes from sent 

to the computer via a National Instruments (NI) 

(USB-6009) DAQ card through analog pins. The 

DAQ card has two analog outputs, three analog 

inputs, a sampling rate of 48 kS/s, and input voltage 

range of ±10 V. the computer runs 

MATLAB/Simulink software program to read the 

analog signal from the sensor and feed the pneumatic 

servo valve by appropriate controlled signals, the 

whole process happens in real-time environment. A 

photograph of the test rig of the Pneumatic System is 

shown in Figure ‎3. 

I. ONLINE SYSTEM IDENTIFICATION  

Online system Identification estimates the model 

parameters when new measured data is available 

while the physical system is working, typically 

performed using a recursive algorithm which they use 

the current input and output measured data and 

previous parameter estimates. Therefore, it is 

important to have initial model parameters. In order 

to, obtained a suitable dynamic model reflect the plant 

characteristics, many experiments were performed on 

the test rig. First, online identification using the 

ARMAX model was accomplished using the impulse 

response of the physical system. Figure 2.  shows the 

Simulink block diagram of parameter estimation that 

was interfaced to the physical system through the data 

acquisition card. The Simulink block diagram sends 

the appropriate input signal to the servo drive through 

an analog output. The response of the actuator drive 

(piston displacement) was measured and transmitted 

to the computer through the analog input (DAQ 

input). In order to, estimate the model parameters, 

several prediction strategies were performed with 8-

bar supplied pressure and 10-ms sampling time. 

 

 

 

 

 

 

Figure ‎2. Simulink Block Diagram of the Real System with ARMAX 
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Figure ‎3. Photograph of the Test Rig of the Pneumatic System 

Transfer function order Signal 

Statistical criteria 

Min. Max. 
Square 

error 

Standard 

deviation 

Third order 

Actual output 0 7.227 

2.34e−4 

0.9874 

Predicted model output -1.322e-09 7.139 0.9874 

Error -0.5911 0.3959 0.987 

Fourth order 

Actual output 0 6.478 

8.46e-5 

0.8952 

Predicted model output -0.005356 6.452 0.04816 

Error -0.3172 0.312 0.8956 

Fifth order 

Actual output 0 7.088 

9.28e-4 

0.9924 

Predicted model output -0.002298 7.042 0.9925 

Error -0.2254 0.05628 0.02005 
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Table 1. Comparison of statistical error analysis of different transfer function orders with the one-step prediction 

a. Effect of prediction orders 

The model order can be driven mathematical or 

guessed from prior physical knowledge. The quality 

of the estimated mathematical model highly depends 

on the model structure. In all cases, many models 

have to estimate in order to obtain the best model. 

Therefore, several experiments were performed using 

different mathematical model orders (e.g., third, 

fourth, and fifth orders) and different prediction step 

sizes (e.g., one step, five steps, and ten steps) to show 

the effect of the estimation orders and the effect of 

step size prediction. 

Figure ‎4. shows the online measured output and third-

order estimated model with one-step prediction. The 

square error is 2.34e−4 cm, and the Standard 

deviation is 0.04141 cm. Thus, the obtained transfer 

Function is: 

       -0.0086731 z^2 + 0.24321 z + 0.06598 

G (z) = ------------------------------------------------- 

       z^3 - 0.66561 z^2 - 0.30705 z + 0.34817 

Figure 5. shows the online measured output and 

fourth-order estimated model with one-step 

prediction. The square error is 8.46e-5 cm, and the 

Standard deviation is 0.003269 cm. Thus, the obtained 

transfer Function is: 

                           0.0103z^2 + 0.0761z + 0.0761 

G (z) = --------------------------------------------------------           

z^4 - 2.0470 z^3 + 1.0700z^2 + 0.0787z - 0.1017 

 

Figure 4. Variation of the measured output, third-order 
predicted model with one-step prediction and error 
versus time. 

Figure 5 Variation of the measured output, fourth-order 
predicted model with one-step prediction and error 
versus time.

 

Figure 6. Variation of the measured output, fifth-order 

predicted model with one-step prediction and error 

versus time 

Figure 7. Variation of the measured output, fourth-

order predicted model with five-step prediction and 

error versus time 
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figure 6. shows the online measured output and fifth-

order estimated model with one-step prediction. The 

square error is 9.28e-4 cm, and the Standard deviation 

is 0.00537 cm. Thus, the obtained transfer Function is: 

    0.044675 z^4 + 0.14976 z^3 - 0.3674 z^2 + 0.44021 z - 0.26773 

G (z) = ----------------------------------------------------- 

      z^5 - 2.4258 z^4 + 2.7044 z^3 - 1.8968 z^2 + 

0.83927 z - 0.22339 

different estimated models and statistical error 

analysis proved that the best results were the fourth 

order with one-step prediction, this is because the 

pneumatic systems are highly nonlinear systems, so 

that, the one-step prediction succeeded in tracking the 

system changes. In contrast, five-step predictions in 

Figures 7.introduced delay, which prevented the 

predicted models from following the transient 

response accurately 

Table 1.illustrate a comparison of the statistical 

analysis of the ARMAX estimated models with 

different transfer function orders and one step 

prediction. The fourth transfer function shows 

minimum square error, as a result, was adopted as the 

system a dynamic model for the controller design. 

 

II. CONTROLLER DESIGN 

a. Fractional Order PID Controller 

Fractional order calculus is a generalization of the 

integral integration and differentiation to the non-

integer order. a𝐷𝑡
𝑟  is the fundamental operator where 

the lower and upper bundies of the operation are 

denoted by a and t respectively and r is the fractional 

order. Different types of fractional order controllers 

have been proposed in the literature [28-31] Since 

A.Oustaloup presents the idea of fractional calculus to 

control a dynamic system. The most common form of 

fractional order controllers was introduced by 

I.Podlubny in 1994 [32], a generalization of popular 

PID controller, which is known as the PIλDμ  

controller, where λ 𝑎𝑛𝑑𝜇 are fractional orders of the 

integral and derivative parts of the controller, 

respectively. Therefore, if  λ 𝑎𝑛𝑑𝜇  are equal one will 

obtain the famous conventional integral PID 

controller.  

The transfer function of PI
λ
D

μ
 controller has the 

form: 

𝐶(𝑠) =  
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑃 +

𝐾𝐼

𝑆λ
+ 𝐾𝐷𝑆𝜇 ,    (λ, μ > 0) (20) 

Where C(s) is the controller output, U(s) and E(s) are 

control and error signals, Kp is the proportional gain, 

Ki the integration gain and Kd the differentiation gain.  

In general, all four different forms of classic PID 

controllers can obtain by set λ 𝑎𝑛𝑑𝜇  positive integral 

number. However, we are not interested to obtain 

integral order PID controller from fractional order 

PID controller, since FOPID controller is infinite 

dimensional linear filter, usually controller λ 𝑎𝑛𝑑𝜇 are 

fractional. Therefore, in fractional order PID 

controller not only we have three controller gains Kp, 

Ki, and Kd, but also, we tune the controller integral 

and derivative order, which will give more flexibility 

to adjust the dynamic properties of the controller, and 

as a result we will enhance the performance of the 

system, as well as the gain tuning process will become 

more challenge since we have five parameters instead 

of three. 

b. PID-type fuzzy logic controllers  

Many fuzzy logic controller structures have been 

proposed in the literature (WJM Kickert, EH 

Mamdani, 1978), (CC Lee, 1990), (J Lee, 1993), 

(Mann G, el al, 1990) since Mamdani-type fuzzy 

controller mimic the human operator behavior in the 

1970s. The significant work of using fuzzy logic in 

control systems based on obtaining the mathematical 

model first then design and analysis a nonlinear fuzzy 

logic controller was by Sugeno in the 1990s. This 

researcher focusses on direct action fuzzy controller 

which called PID-type fuzzy controller (PID-FLC). 

(Mann G, el al, 1990) Analyzed the direct action 

fuzzy PID controller structures. The PID-FL 

controllers are classified according to the number of 

inputs to the PID-FL controller.  

The PID-type fuzzy controller used in the research 

illustrated on the Figure . which consists of two, the 

error and derivative of error which represent the PD 

part of the PID-FL controller and output part represent 

an integral part. 
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Figure 8. Two-inputs fuzzy PID-FL controller 

The advantages of the two inputs fuzzy PID-FL 

controller do not need much computations, and stable 

for real-time implementation. As two inputs are 

supplied to the fuzzy controller, a smaller number of 

rule-base is required to be designed compared to the 

three-input structures. In term of the processing time, 

the Sugeno-type fuzzy inference is much faster than 

the Mamdani-type fuzzy inference, since the output 

membership functions of Sugeno-type fuzzy inference 

are functions. Therefore, the Sugeno-type fuzzy 

inference is more reliable for real-time applications.  

The PID-type fuzzy controller we designed consists of 

twenty-five rules, as shown in Figure 9. and Table 2. 

two inputs and one output, each one of them 

composed of five membership functions. Then, serval 

optimization algorithms are applied to tune the 

controller parameters, which transform the system 

input/output into the normalized range of [-1, 1]. 

Table 2. 5 X 5 fuzzy logic controller rule-base 

e/de NB NS Z PS PB 

NB NB NB NB NS Z 

NS NB NB NS Z PS 

Z NB NS Z PS PB 

PS NS Z PS PB PB 

PB Z PS PB PB PB 

c. Objective functions 

For design an optimal FOPID controller. Several 

objective functions can be used for the time-domain 

optimization [33]. For example, 

Integral absolute error:  

IAE =  ∫ |𝑟(𝑡) − 𝑦(𝑡)| 𝑑𝑡
𝑡

0

=  ∫ |𝑒(𝑡)| 𝑑𝑡
𝑡

0

, (21) 

Integral square error: ISE = ∫ 𝑒2(𝑡) 𝑑𝑡,
𝑡

0
 (22) 

Integral time-square of error:  

ITSE = ∫ 𝑡𝑒2(𝑡) 𝑑𝑡
𝑡

0

, and  (23) 

Integral time-absolute of error: 

ITAE = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡.
𝑡

0

 (24) 

It is worth to notice that the different performance 

indices will obtain different controller gains 

consequently will produce different controller 

performance. Specifically, IAE and ISE criteria can 

eliminate the overshoot but, in a bit, long settling 

time, because of both IAE and ISE performance 

criteria weights all errors equally independent of time. 

In contrast, ITSE and ITAE can overcome that 

disadvantage [34]. The optimization process works as 

shown in figure 10. Table 2, table 4, and table 5 

contain the search domains of the controllers for all 

optimization algorithms. 

 

 

Figure 9 The distribution of the inputs/output 

membership functions 
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Figure 10. Optimization process flow diagram 

Table 3. PID Controller search domain for all 

optimization algorithms 

 Lower Bounds Upper Bounds 

Kp 0 0.5 

Ki 0 1 

Kd 0 1 

In integral order PID controller case, all search 

algorithms failed to find the optimal controller 

parameters from the first time, so it was necessary to 

repeat the search process serval times with different 

search domain.  

Table 4. FPID Controller search domain for all 

optimization algorithms 

 Lower Bounds Upper Bounds 

Kp 0 1 

Ki 0 2 

Kd 0 2 

Mu 0 1 

Lambda 0 1 

Table ‎II. PID-type Fuzzy Controller search domain 

for all optimization algorithms 

 Lower Bounds Upper Bounds 

K1 0 1 

K2 0 2 

K3 0 2 

K4 0 1 

d. Genetic algorithm (GA) 

Genetic algorithm (GA) is the most popular 

optimization algorithm based on the natural selection 

process and genetic evolution of the population. GA 

starts with a set of solutions (called population) of 

randomly generated chromosomes. The population in 

each iteration called generation. At each generation, 

the fitness of every chromosome is evaluated by the 

objective function. The fittest chromosomes will 

select to be parents and the next generation will 

(children) will produce by crossover and mutation of 

the parents [35].  

The procedure of GA is given by the following 

algorithm 

 

Table 6. Parameters used in the genetic algorithm. 

The closed loop unit step response simulation results 

with fractional and integral order PID controller, and 

PID-type fuzzy controller designed using GA are 

plotted in figure 11. Obviously, both fractional and 

PID-type fuzzy controller improved the time response 

characteristics and eliminated the overshoot. In 

contrast, integral order PID controller struggles to find 

the optimal controller gains. As a result, it doesn’t 

improve the system response. Table 7. reported all 

optimal controllers’ parameters. 

Table 7. The optimal controllers’ gains tuned by GA 

 Kp Ki Kd Lambda Mu 

PID 1 
0.0014

92 

0.04991

3 
1 1 

FPID 
0.821

40 

0.1247

12 
0.69211 0.00508 

0.124

712 

 K1 K2 K3 K4  

Fu-

PID 

9.999

4 
0 1.2413 3.9218 0 

e. Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a global 

optimization algorithm inspired by the behavior of 

birds. It is a simple and efficient algorithm compared 

with other algorithms. A collection of individuals 

called particles moves in steps throughout a region. At 

each iteration, the PSO algorithm evaluates the fitness 

Parameter Type/value 

Generations 100 

Selection Uniform 

Crossover Constrained dependent 

Mutation Constrained dependent 

Encoding Binary 

Fit. Fun. Integral absolute error 

Set t = 0. 

Initializes the population P (0). 

While (condition true) do 

Evaluate fitness of everyone of P(t). 

Select the best-fit individuals from P(t) 

and set them as parents 

Apply crossover and mutation operations 

on parents to generate a new generation 

P(t+1). 

t = t + 1. 
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function for each particle. After the evaluation 

process, the PSO algorithm gives the new velocity of 

each particle. The particles move, then the PSO 

algorithm re-evaluates [35].  

The velocity of each particle is adjusted according to 

its own flying experience and the flying experience of 

other particles. The modified velocity and position of 

each particle can be calculated using the current the 

distance and velocity from 𝑥
𝑖,𝑑
𝑏  to global best as 

shown in the following equations [36] 

𝑣𝑖(𝑡 + 1) = 𝛼𝑣𝑖(𝑡) + 𝑐1𝑟1 (𝑥𝑖
𝑏(𝑡) − 𝑥𝑖

𝑘(𝑡))  

+  𝑐2𝑟2(𝑥𝑖
𝑔
(𝑡) − 𝑥𝑖

𝑘(𝑡)) 
(25) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)   (26) 

𝛼(𝑡) =  𝛼𝑚𝑎𝑥 − (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)
𝑡

𝑇
 (27) 

Table 8. Parameters used in PSO. 

 Search Criteria 

No.of.Particles 15 

No.of. Iterations 40 

Fitness Fun. Integral time-absolute of error 

 

 

Figure 12. shows compassion among three different 

controllers PSO-PID, PSO-FPID, and PSO-type 

Fuzzy Controller. It is observed that both fractional 

order PID controller and a PID-type fuzzy controller 

that tuned by PSO improved the time response 

characteristics and eliminated the overshoot. In 

contrast, integral order PID controller has the same 

rise time as fractional order PID, but it struggles to 

show an acceptable response.table 9. illustrates the 

different parameters of controllers.  

Table 9. The optimal controllers’ gains tuned by PSO 

 Kp Ki Kd Lambda Mu 

PID 1 -0.0018 0.0499 1 1 

FPID 
0.94

18 

0.0760

9 

0.0977

9 
0.25466 

0.844

2 

 K1 K2 K3 K4 - 

FPID 
0.39

18 

10.021

3 
1.4529 2.500.1 - 

f. Gray Wolf Optimization (GWO) 

Gray Wolf Optimization is a mathematical model for 

the social hierarchy and hunting techniques of gray 

wolves social behavior. The algorithm made up of 

four different kinds of wolves (α, β, δ, and ω). Alpha 

(α) is the best solution, beta (β) and delta (δ), 

considered as second and third best solutions. The rest 

of the wolves are omega (ω). At the beginning of 

optimization search, all solutions are considered as ω, 

until the first iteration finished, the three best 

solutions are assigned to (α, β, and δ) wolves [37]. 

After assuming the random solutions, wolves start 

encircling the prey according to equation (26): 

𝐷⃗⃗ = | 𝐶⃗⃗  ⃗ ×  𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝑋⃗⃗⃗⃗⃗  (𝑡)| (28) 

𝑋 ⃗⃗  ⃗(𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) −  𝐴⃗⃗⃗⃗⃗  ×  𝐷⃗⃗⃗⃗⃗⃗  (29) 

Where 𝑋 indicates the position vector of a grey wolf, 

and 𝑋𝑃
⃗⃗ ⃗⃗   represents the position vector of the prey, t is 

the current iteration, 𝐴⃗⃗⃗⃗⃗   and 𝐶  are coefficient vectors 

and given in equations. 

𝐴 ⃗⃗  ⃗ = 2.  𝑎⃗⃗⃗  . 𝑟1⃗⃗⃗  −  𝑎⃗⃗⃗   (30) 

𝐶 ⃗⃗  ⃗ = 2. 𝑟2⃗⃗  ⃗ (31) 

Where components of 𝑎 are linearly decreased from 2 

to 0 over the course of iterations and𝑟1, 𝑟2 are random 

vectors in [0, 1] 

The optimizations process continuous by sorting and 

save the best three solutions (α, β, and δ) obtained so 

far. The rest of the candidate solutions update their 

positions according to equations (31, 32, and 33). 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗  −  𝑋⃗⃗⃗⃗⃗  |,  

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗  −  𝑋⃗⃗⃗⃗⃗  |,   

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗  −  𝑋⃗⃗⃗⃗⃗  | 

(32) 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  −  𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝐷𝛼 ,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (33) 

Initialize  

repeat  

for each particle i in S do  

if  f (xi) < f(pbi) then    pbi = xi  

end if  

if  f (pbi) < f(gb) then  gb = pbi  

end if  

end for  

for each particle i in S do 

for each dimension d in D do  

calculate the velocity  

calculate the position  

end for  

end for  

it = it +1  
until  it > MAX _ITERATIONS 
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𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  −  𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝐷𝛽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  −  𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝐷𝛿

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝑋 ⃗⃗  ⃗(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
 (34) 

The last closed-loop simulation results, shown in 

figure 13. are the three controllers designed using 

GWO. Similar to the two previous search algorithms, 

GWO successfully obtained the optimal controller 

parameters, as a consequence, both fractional and 

PID-type fuzzy controller improved the time response 

characteristics. In contrast, integral order PID doesn’t 

struggle dealing with the system nonlinearly. Table 

10. reported all optimal controllers’ parameter. 

 

Table 10. The optimal controllers’ gains tuned by  

GWO 

 Kp Ki Kd Mu 
lambd

a 

PID 
0.994

2 
0.0036 0.0500 1 1 

FPI

D 

0.831

11 

0.1076

00 

0.1007

03 

0.729

01 

0.342

01 

 K1 K2 K3 K4 - 

Fu-

PID 

0.486

5 
9.4414 1.0529 

1.824

3 
- 

Initialize the grey wolf population Xi (i = 1, 

2, ..., n)  

Initialize a, A, and C  

Calculate the fitness of each search agent  

Xα=the best search agent  

Xβ=the second-best search agent  

Xδ=the third best search agent  

while (t < Max number of iterations)  

      for each search agent  

          Update the position of the current 

search agent by equation (3.7)  

     end for  

    Update a, A, and C  

    Calculate the fitness of all search agents  

    Update Xa, Xp, and Xo 
    t=t+ I  

end while  

return Xa 
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g. Comparison of Three Controllers 

Three different search algorithms are employed to 

seek the optimal parameters values for three 

controllers, fractional order PID controller, integral 

order controller and PID-type fuzzy logic controllers. 

The results show that all the three algorithms are 

guaranteed to find the optimal controller parameters 

of the pneumatic servo system. Figure 14. shows the 

controllers designed using the three different search 

algorithms have quite similar performance. The 

different between GA and POS and GWO are the 

number of iteration and the computational time, and it 

is not surprising since both PSO and GWO has simple 

structure compared with GA which has serval 

computation processes such as selection and 

crossover. 

The second observation is both fractional PID 

controller and PID-type fuzzy controller, show a good 

performance, but the design steps are completely 

different also several runs were required to find the 

optimal controller parameters as all optimization 

search algorithms failed to find the optimal values on 

the first attempt. On the other hand, integral order PID 

doesn’t struggle dealing with the system nonlinearly. 

To summarise, Integral order PID controller is an 

especial case of fractional order PID controller where 

the derivative exponent mu and integral exponent 

lambda are equal to one. Therefore, if the integral 

order controller fulfills the intended system needs, in 

this case, integral order PID controller is the best 

choice, since it has a simple structure, easy to 

 

Figure 11. Step response of the system with 

controllers tuned by GA 

Figure 12. Step response of the system with 

controllers tuned by PSO 

 

Figure 13. Step response of the system with 

controllers tuned by GWO 

Figure 14.  Step response of the system with 

controllers tuned by the three controllers 

 

Figure 15. Variation of the real-time system response 

and demand multiple speed profiles versus time 

Figure 16. Comparison between real system position 

and simulated model position with demand multiple 

position profiles versus time 
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implement, and doesn’t need higher order filter. But 

in the case of nonlinear systems integral order PID 

doesn’t show a good performance in comparison with 

the linear controllers, the presented Fractional order 

PID and PID-type fuzzy logic controller showed 

excellent performances. 

h. Real-time implementation of fuzzy controller 

After achieving satisfactory results, the optimized 

controller(s) was applied to the real system through 

the real time environment in order to validate the 

controller performance on the real system as well as 

ensure the estimated model accuracy figure 15. shows 

the variations of the desired speed profile, the real 

time system response with controller and the 

simulated system speed response. The results assure 

much closer tracking of the speed profile, with good 

time response characteristics. 

Figure 16. shows the results of the accumulated 

displacements of real time system response with 

controller and the simulated system, due to multiple 

profiles. The pneumatic system succeeded in tracking 

the desired position and showed minimum sustained 

oscillations. 

III. COLCLSION   

In this paper, a method to identify and control 

pneumatic servo drive is proposed and implemented. 

In order to avoid the great difficulty associated with 

servo-pneumatic system modeling and control, an 

online-system identification method is employed to 

approximate the dynamic system model from the 

input/ output measured data using the recursive least 

squares algorithm (RLS) based on the auto-regressive 

moving-average model (ARMA). The advantages of 

this method apart from high accuracy in the identified 

model, reduction in the tuning time required of the 

controller parameters, and low cost. The results 

showed a good match between the simulated model 

and real system response. This implies that the 

accuracy of the predicted model obtained through on-

line identification is high. Furthermore, the estimated 

model used to control the pneumatic servo system 

showed an excellent performance in tracking the 

reference positions of multiple profiles.  

Due to the highly nonlinear nature of the system under 

study, two sophisticated controllers, PID-type fuzzy 

logic controller and Fractional order PID controller 

were chosen as well as the integral order PID 

controller. The results indicated that the both 

presented controllers, fractional order PID, and PID-

type fuzzy logic controller, showed excellent 

performances. On the other hand, several runs were 

required in order to capture the excellent PID-type 

fuzzy logic controller performance as all algorithms 

failed to find the optimal values on the first attempt. 

That is because the performance of the fuzzy 

controllers depends highly on the proper selection of 

many design parameters. In contrast, integral order 

PID struggles to deal with the system nonlinearly. 

Finally, the three search algorithms, namely genetic 

algorithms (GA), particle swarm optimization (PSO), 

and gray wolf optimization (GWO), were utilized to 

find the optimal parameters of the three controllers. 

Similarly, both PSO and GWO were able to find the 

optimal controller parameters as GA, but differently, 

both of them did not need many computations as GA. 
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